Friday, December 10, 2021

Lupine Publishers| Objective Structured Examinations as Supplemental Equipment for Amending Emotional Intelligence: A Pilot Survey

 Lupine Publishers| Journal of Neurology and Brain Disorders

Abstract

Background: The scientific study of emotional intelligence (EI) in organizations has gained considerable research activity over recent years because it is being concerned with awareness and management of one’s own feelings and emotions in daily living activities. The objective of the present study was to investigate the relationship between EI of a group of psychiatric residents and their academic achievement to see that whether proper training and evaluation by new educative instruments can recompense any degree of shortage in EI.

Methods: Consistent with a cross-sectional survey design, 31 psychiatric residents had been requested to answer to The Schutte Self Report Emotional Intelligence Test (SSEIT), in June 2014, for examining the situation with respect to objective structured examinations, like mini-Clinical Examination Exercise (mini-CEX), Objective Structured Clinical Examination (OSCE), and chartstimulated recall (CSR) scores, which had been taken in the earlier 6 months. SSEIT score of 90 had been taken as demarcating point for dividing the sample population into two parallel groups, including the first group with SSEIT score lower than 90 and second group with SSEIT score equal to or more than 90.

Results: The response rate was 93.54%. In line with the results, there was no meaningful relationship between the aforesaid first group and second group as regards the relationship between SSEIT’s score and the mean total score of Mini-CEX, OSCE, and CSR, which had been examined in the preceding 6 months.

Conclusion: The current study demonstrates that EI does not seem to be a fixed problem in psychiatric residents, and enough exercise along with improvement of necessary interrogating or clinical skills may improve or compensate for unsatisfactory EI.

Keywords:Emotional Intelligence; Objectives Structural Examinations; Psychiatric Residents

 

Introduction

The scientific study of Emotional Intelligence (EI) in organizations has gained considerable research activity over recent years [1]. Simultaneously researchers have investigated and raised concerns about the appropriate way to measure EI in various studies [2]. Although EI has been the subject of much attention at both popular and academic level, only now are answers provided to some of the fundamental questions posed about the construct [3]. Dulewicz, Higgs and Slaski confirm that in literature there appears to be some debate about what constitutes the domain of EI, about terminology used to describe the construct and about methods used to measure it [4]. One method that has been used widely in research to measure EI is the Schutte Emotional Intelligence Scale (SEIS) [5]. Dulewicz et al. state that EI is not a new concept [4]. Mayer, Salovey and Caruso [6] define the concept of EI as the capacity to reason about emotions, and of emotions to enhance thinking. EI includes the abilities to accurately perceive emotions, to access and generate emotions in order to assist thoughts, to understand emotions and emotional knowledge, and to reflectively regulate emotions in order to promote emotional and intellectual growth [6]. Dulewicz and Higgs [4] define EI as being concerned with being aware of and managing one’s own feelings and emotions; being sensitive to and influencing others; sustaining one’s motivation; and balancing one’s motivation and drive with intuitive, conscientious and ethical behavior. It is apparent that from this theoretical perspective EI refers specifically to the co-operative combination of intelligence and emotion [7]. EI emphasizes the importance of self-awareness and understanding, redressing a perceived imbalance between intellect and emotion in the life of the collective Western mind [7]. Zeidner et al. further state that EI also connects with several cutting-edge areas of psychological science, including the neuroscience of emotion, self-regulation theory, studies of meta-cognition, and the search for human cognitive abilities beyond ‘traditional’ academic intelligence. Given the core proposition that it is a combination of IQ and EI that determines life success, a question arises as to whether or not it is feasible to measure EI [4]. On the other hand, an Objective Structured Clinical Examination (OSCE) is a modern type of examination often used in health sciences (e.g. Midwifery, orthoptics, optometry, medicine, naturopathic medicine, physician assistants/associates, physical therapy, radiography, nursing, pharmacy, dentistry, chiropractic medicine, paramedicine, podiatry, veterinary medicine). It is designed to test clinical skill performance and competence in skills such as communication, clinical examination, medical procedures / prescription, exercise prescription, joint mobilization / manipulation techniques, radiographic positioning, radiographic image evaluation and interpretation of results [8]. Simulation is a new exciting technology incorporated in undergraduate medical curriculum. It is well accepted by educators across the world to improve experiential learning by enhancing the performance of medical professionals [9]. Simulation is defined as imitation of the “real world” setting to model the environment, resources needed, and the people involved [10]. Educators have encountered educational challenges by reforming the curriculum, developing problem-based learning, and promoting research as well as independent learning. Nevertheless, disparity still persists between the preclinical and clinical environment. Preclinical medical students have minimal contact with clinical cases and are apprehensive when they commence their clinical years and internship. Many students feel that they are inefficient in history taking, physical examination, diagnosis, and management. Medical simulation has been adopted to bridge this educational gap and provide an opportunity to learn from errors [11]. The objective of the present study is to investigate the relationship between EI of a group of psychiatric residents and their academic achievement to see that whether proper training and evaluation by new educative instruments can recompense any degree of shortage in EI.

 

Methods

A cross-sectional appraisal scheme was used in the present assessment. Psychiatric residents were informed about the objective and method of the study, voluntary format of contribution, anonymity and privacy of information. The study was accomplished during June 2014. Total existing population of psychiatric residents was selected as the sample for this study (n=31). Among the total 31 psychiatric residents, 29 participants (93.54%) responded to the evaluation. While one of the participants was reluctant to participate in the assessment, another one was absent during the assessment. Two different types of tools were used in the current estimation. The first one was a demographic inquiry form that involved four queries of sex, age, year of training and educational outcomes regarding their objective structured examinations, including Mini-Clinical Examination Exercise (Mini- CEX), Objective Structured Clinical Examination (OSCE), and Chart-Stimulated Recall (CSR) scores. It deserves to be mentioned that Mini-CEX is a method of appraisal that can be used to evaluate the clinical skill of residents and can enhance student learning and develop student professionalism in serving patients [12]. CSR, as well, has been utilized by active specialists in medicine as a reliable and valid instrument to find strengths and weaknesses in medical practice [13]. OSCE, too, is a modern form of scrutiny that is planned to test clinical skills such as clinical examination, communication, medical procedures / prescription, etc. [14]. The second instrument involved the Schutte Self Report Emotional Intelligence Test (SSEIT), which was developed by Schutte et al. [5]. This tool measures trait EI by means of 33 self-referencing items that evaluate EI level of the person. Individuals score the level they agree or disagree with every single announcement on a 5-point measure oscillating between 1 (strongly disagree) and 5 (strongly agree). Three items among the thirty-three ones [15], are inversely scored. According to Schutte et al., while the two-week test-retest reliability co-efficient of SSEIT is around 0.78, the scale has high internal consistency with Cronbach’s alpha (α) ranging from 0.87 to 0.90 (31). SSEIT scale has been used in different studies with a range of samples including adolescents, adults, and secondary school apprentices, and it is easy to apprehend and score [5]. SSEIT score of 90 is usually taken as a cut-off point. While SSEIT score of 90 or higher includes: low average (90-99), high average (100-109), competent (110-119), strength (120-129) and significant strength (130+), SSEIT score of 89 and lower consists of: consider improvement (70-89) and consider development (69 or less), based on Mayer’s guidelines [15].

 

Statistical Analysis

Demographic characteristics were analyzed by comparison of proportions regarding gender and year of study and comparison of means (t-test) regarding age, scholastic evaluative scores and EI. Data analysis was conducted using MedCalc Statistical Software version 15.2. Statistical significance was determined as a P≤0.05.

 

Results

The demographic characteristics of the study participants are described below in Table 1, and there was no significant baseline demographic difference between male and female participants regarding ethnicity, quantity, age and SSEIT score (Table 1). Among 31 psychiatric residents of the University of Social Welfare and Rehabilitation Sciences, 29 participants (93.54%) answered back to the survey and replied to the Schutte Self Report Emotional Intelligence Test in June 2014.One of the residents was reluctant to participate and another one was on leave during the assessment. 17.24% (n=5), 27.58% (n=8), 24.13% (n=7) and 31.03% (n=9) of the participants were 1st year, 2nd year, 3rd year and finally 4th year post graduate trainee, respectively (Table 2). According to the findings and based on ANOVA, there was no significant difference among four groups of participants with respect to the SSEIT scores (Table 3). In the current evaluation, SSEIT score of 90 was taken as a demarcating point. As a result, while SSEIT score of 90 or higher could include: Low average (90-99), High average (100- 109) , Competent (110-119), Strength (120-129) and Significant Strength(130+), SSEIT score of 89 and lower as well could consist Consider Improvement (70-89) and Consider Development (69 or less), based on Mayer’s guidelines (Mayer, et al., 2002, p. 18). On the whole, in the present sample population, 34.48% (n=11) of the participants had SSEIT score of 89 or lesser (first target group, with a SSEIT score of 83.45+/-3.98), and 79.31% (n=18) of the contributors had SSEIT score of 90 or higher (second target group, with a SSEIT score of 101.5+/-9.03) (Table 4). While quantitatively and base on ‘Comparison of Proportions’ there was no significant difference among those two target groups (z = -1.8383, p<0.06, C I 95% = -0.49, 0.01), comparison of means showed a significant difference, with respect to SSEIT score, among them (p<0.000) (Table 4). But as the main objective of the present assessment and based on between-group analysis and comparison of means, while the mean total scores of the 2nd Group ( with SSEIT score = or >90 ) was commonly higher than the first group (with SSEIT score <90 ) in objective structured examinations, including Mini-CEX, OSCE and CSR , no significant difference was evident among those two target groups regarding their performance in those objective educational tools for assessment of trainee’s skills(p<0.10, p<0.09 , p<0.16, respectively) (Table 5). Post-hoc power analysis showed a power equal to 0.36 on behalf of this trial, which turned to power=0.74 in compromised power analysis.

Discussion

Simulation based education is a promising discipline that provides secure and effectual learning platform for students. The clinical sessions can be planned, observed and repeated to facilitate learning [16]. Exposure to simulation for medical students is a valuable tool to enhance knowledge and student self-confidence at a key transition period prior to beginning of internship [16]. Students report difficulty in applying theoretical knowledge and perceive shortcomings in integrating basic science knowledge with clinical practice [17]. Imparting medical knowledge and skills without placing a patient at an increased risk of complications can be attained through simulation sessions for undergraduate medical students who do not have complete autonomy in diagnosis and management of clinical cases [18]. One of the most challenging aspects of teaching residents is identifying tools for assessment for learning. Assessment for learning allows teachers to see where their residents are doing well and where they need further instruction; as well, it allows teachers to target instruction during the assessment to further residents’ understanding [19]. An OSCE, as the prototype of such kind of innovative evaluations, usually comprises a circuit of short (the usual is 5–10 minutes although some use up to 15 minute) stations, in which each candidate is examined on a one-to-one basis with one or two impartial examiner(s) and either real or simulated patients (actors or electronic patient simulators). Each station has a different examiner, as opposed to the traditional method of clinical examinations where a candidate would be assigned to an examiner for the entire examination. Candidates rotate through the stations, completing all the stations on their circuit. In this way, all candidates take the same stations. It is considered to be an improvement over traditional examination methods because the stations can be standardized enabling fairer peer comparison and complex procedures can be assessed without endangering patient’s health. As the name suggests, an OSCE is designed to be objective (all candidates are assessed using exactly the same stations (although if real patients are used, their signs may vary slightly) with the same marking scheme, structured (stations in OSCEs have a very specific task. Where simulated patients are used, detailed scripts are provided to ensure that the information that they give is the same to all candidates, including the emotions that the patient should use during the consultation.

Instructions are carefully written to ensure that the candidate is given a very specific task to complete, and, finally, clinicaloriented (the OSCE is designed to apply clinical and theoretical knowledge. Where theoretical knowledge is required, for example, answering questions from the examiner at the end of the station, then the questions are standardized and the candidate is only asked questions that are on the mark sheet and if the candidate is asked any others then there will be no marks for them) [20,21]. So, competent performance requires not only requisite knowledge and skills but also beliefs of personal efficacy to use both effectively. Anyhow, the relationship between clinical experience and student performance is complex. Well-organized and strategic learning styles appear to influence the benefits of increased clinical exposure. Direct observation of clinical skills is a critical first step in helping trainees to improve their clinical skills [22]. Back to our discussion and according to the findings of the present assessment, while significant difference was palpable between two groups of psychiatric residents regarding emotional intelligence, based on SSEIT score, no significant correlation was evident between that factor and academic performance of participants. Such a result may not be in harmony with the suggestion of Carrothers et al. [23] who had suggested using EI as part of the selection process for medical students and Stratton et al. [24], who stated that Individuals with low levels of EI may lack the ability to relate empathetically with patients as they are unable to recognize feelings, distress, and mood , or belief of McQueen [25] who said that low levels of EI leads to a negative impact on the doctor–patient relationship . In contrast, our finding was more in agreement with Stratton et al. [24] who found only a modest correlation between EI, and students’ clinical skills assessed by standardized patients in an Objective Structured Clinical Examination (OSCE). On the other hand it could not deny the view of Arora et al. [26] who noted that higher EI may play a role in maintaining good physician–patient relationships, improved teamwork and communication skills, better stress management, and superior commitment and leadership, since generally higher scores in the aforesaid objective assessments were observable, as well, in the present assessment and in the group with higher SSEIT score, though non-significantly. On the other hand, non-significant difference between two groups regarding objective assessment tools could be attributed to the preparation of psychiatric residents, from the start, respecting basic principles and techniques of interview, in general, and sympathy, rapport, verbal and non-verbal communication, specially.

Such an inference is in harmony with the standpoint of Stoller et al. [27] who had recommended that a spiral curriculum should be used to develop EI skills of physicians. Also, while Austin et al. [28] found a gender-based difference and significantly higher overall EI and empathy in female medical students, as like as Carrothers et al. [23], in the present assessment as well higher SSEIT score was evident in female residents, but it was not a significant variance. Such discrepancies may necessitate taking into consideration other interconnected factors that may easily be ignored during scientific assessments, as like as culture, which has been declared by Cherniss and Goleman [29] as a factor that can influence both an individual’s response to an event and the subsequent response selection. In this regard, anthropologists also suggest that cultures have conventions and norms that influence the management of emotions in individuals [30]. These cultural values create commonality and predictability among individuals in their interpretation and response to emotional stimuli. Past research has shown that Whites score lower on EI tests than Hispanics and Blacks [30], a finding that is not in congruence with the later educational and social achievements. Therefore, it is important to study EI in different cultures and ethnic populations to gain insights into their emotional processes. One conclusion from this assessment could include that, while enhancement of rapport, sympathy and emotional intelligence skills, according to Stoller et al. [27], can be an auspicious enlightening approach, selection of medical students based on EI is a discriminating dogma. Also, too much stress on significance of EI by medical mentors is not reasonable, since still a notable unpredictability exists regarding the subject. Evidence based medicine cannot be established on uncertain grounds. If psychiatric training can make low EI a trifling phenomenon, so it can happen in other areas of clinical practice as well. Anyhow , while small sample size, constrained number of objective assessment tools, restriction of study to merely psychiatric residents, limitation of study to a short period of assessment, lack of control or comparison group were among the weaknesses of this study, which limit the generalization of its results, it was simply a pilot exploration. Additional investigations in future with larger sample populations and more systematized approach will certainly help to explore in this regard more meticulously.

Conclusion

The current study demonstrates that EI does not seem to be a fixed problem in psychiatric residents, and enough exercise along with improvement of necessary interrogating or clinical skills may improve or compensate for unsatisfactory EI.

 Read More Lupine Publishers Neurology and Brain Disorders Journal Articleshttps://brain-disorders-lupine-publishers.blogspot.com/

 

Friday, December 3, 2021

Lupine Publishers| The Arapetic of the use of the Gum of Mascar in your Different Presentations to Minimize the Dream Inerance and Deprivation

 Lupine Publishers| Journal of Neurology and Brain Disorders


 

 

Abstract

Introduction: Sleep is defined as the natural, periodic and reversible decrease in perception of the external environment, with the preservation of a certain degree of reactivity to the environment and autonomous functions. Sleep consists of 2 phases, REM phase and NREM phase, these phases alternate at night in the form of five to six cycles; of which the NREM phase is 75% presented and the REM by 25%.

Thertita mark: Caffeine is a readily available short-acting stimulant that has been shown to reduce some of the deficits associated with sleep loss. With the rubber mark the absorption is carried out on the oral mucosa, which generates a greater bioavailability of the active substance and an immediate mechanism of action. The effective response dose can range from 100 mg to 200 mg and the effect arises from 6 min of administered the active substance. It is important to note that the dose of caffeine in chewing gum is directly proportional to the effects on sleep inertia, as well as the duration and maintenance of them.

Discussion: Being able to analyze the mechanisms of action of caffeine on sleep inertia, helps us to make a comparison of chewing gum with caffeine vs placebo (simple gum). Chewing generates for a short period of time the maintenance of performance on simple and complex tasks and improves alertness, with caffeine these same effects look prolonged for longer.

Conclusion: Caffeinated gum is an effective therapeutic presentation on sleep inertia. The dosage for a positive response ranges from 75 to 200 mg depending on the circumstances of sleep restriction. That is, thanks to the effects generated by chewing on the state of alertness and cognition and the potentialization and duration of them by caffeine.

 

Introduction

Sleep disorders cause alterations in the quality of life of each and every patient. At least two-thirds of those with chronic degenerative diseases are affected by sleep disorders, the most common being the female sex.

Many individuals are subjected to night jobs where a constant state of alertness is required and scientifically proven how this affects the quality of life of each of the employees; for sleep is one of the most indispensable pillars of daily life, as it maintains critical aspects of cognition for optimal mental performance, as well as in mood, alertness and performance during working days and activities of the and everyday life. Awakening abruptly involves something known as “sleep inertia,” which is characterized by impaired performance and subjective lack of alertness for a transitional period, which hardly progresses to a good cognition. It is well known that chewing facilitates concentration, maintains alertness and improves performance in cognitive tasks, but the question is how effective is by itself the effect of chewing a simple chewing gum vs to one that contains Caffeine? Therefore, one of the objectives of this research work, is to analyze the effects of chewing from a simple chewing gum to one that contains caffeine, verify the effectiveness by reversing the sleep inertia of each of them and know the mechanism of action , the pharmacokinetics, bioavailability and absorption of a caffeinated gum during sleep deprivation.

Theoretical mark

Normal sleep progresses in various stages: NREM (nonrapid eye movement) phase and REM (rapid eye movement) phase. These cycles alternate at night in the form of 5 to 6 cycles. In 75% of normal nighttime sleep is NREM and 25% REM.

Phase brake

It happens every 90 minutes or so. It is characterized by zero muscle tone, presence of active sleep, as the electrical activity of the brain is maximum while the body is at full rest, rapid eye movements, heart rate as well as respiratory evidence of increased basal metabolism and the amount of gastric juice.

Step nrem

Also known as “deep sleep,” it facilitates body rest and consists of 3 phases.
a) Phase N1 (Surface Sleep): very light sleep stage, lasting several minutes. It is characterized by a slight decrease in heart rate, breathing, muscle tone, general state of deep rest, relaxed and drowsy, maintaining active the ability to perceive external stimuli.
b) Phase N2 (Surface Sleep): characterized in EEG by sleep spindles and k complexes. Its duration is 10 to 15 minutes. At this stage the muscle tone relaxes further, slightly decreases body temperature and respiratory and cardiac rate, disappearing eye movements.
c) Phase N3 (Deep Sleep): Characterized by a global slowdown of the electrical path and the appearance of slow waves and high voltage (deltas) whose total duration must be greater than 20% and less than 50% of the plot. Sensory perception decreases markedly, as does heart and respiratory rates. Relaxation of the muscles is intensified. It is more difficult to wake up the subject, and if he does, he finds himself disoriented and confused. It is the fundamental stage for the subject to rest subjectively and objectively.

This research work was done based on various medical studies, where it is addressed from the rate of absorption, the bioavailability, the pharmacokinetics of caffeine in chewing gum, the effects of chewing, how is caffeine it reverses sleep inertia, assessing cognitive performance, mood and alertness after caffeinated gum is administered to the composition, formulation and design of said chewing gum. It will also include in a systematized way each and every one of the articles selected to carry out a bibliographic review and thus carry out a complete study of the effects and effectiveness of chewing gum with caffeine to minimize the inertia of sleep , based on scientific evidence from some experimental studies in which there is certainty of efficacy of it, since caffeine is involved in the autonomic nervous system and exerts its effects by acting as an adenosine receptor antagonist. The approach is an essential part of the daily life of the human being, since it is the pillar to be able to perform any cognitive activity, maintain an effective and consistent performance in order to successfully complete actions of daily life and working days. Fatigue can cause various complications and over time can affect the health of the individual, as well as leading to a reduction in efficiency during the day and the increase in the incidence of any type of accidents [1,2]. Caffeine is a white odorless powder that can have different molecular presentations, can range from an anhydride substance to contain a water molecule. Caffeine is a methylxanthine that inhibits the enzyme phosphodiesterase, generating an antagonistic effect on the central receptors of adenosine, this adenosine occurs during daily activities and binds to its receptors, generating a feeling of fatigue and consequently an induction into sleep. Due to the similarity of adenosine to caffeine, the latter takes place in adenosine receptors and thereby prevents the transmission of the fatigue signal generating that the person can continue performing his daily and work activities for a longer period, since contrary to the feeling of insomnia. Caffeine is a Central Nervous System (CNS) stimulant that can promote wakefulness and increase mental activity. In addition, it can stimulate the respiratory center, increase the frequency and depth of breathing and increase total muscle work. Caffeine is usually consumed and/or commonly administered in the form of a liquid substance, although there are other types of presentations such as tablets or capsules. A new way to consume caffeine is through chewing gum which in turn can provide additional advantages, some of them are:

a) Absorption is done through the oral mucosa, resulting in a greater bioavailability of the active substance at the systemic level.
b) Effective and immediate mechanism of action (oral mucosa).
c) It is easy to use and is suitable even for pediatric patients or patients with difficulty swallowing tablets or tablets.
d) It generates fewer side effects as the active substance is released in proportion to chewing.
e) The primary liver metabolism of the active substance is avoided, as they are absorbed directly by the oral mucosa.
f) Lower risk of overdose by chewing effect.

Chewing is a physiological motor activity involving many neural pathways, this action is associated with increased blood flow at the cerebral and orofacial level which in turn implies effectiveness in increasing alertness, physical well-being and improving memory performance. The active substance (caffeine) of chewing gum is released in proportion to chewing, this in turn is absorbed through the oral mucosa and another percentage of it is swallowed as a bolus with saliva, reaches the gastrointestinal tract and thanks to the caffeine is s the absorption rate is faster compared to that of the tablet. In addition, it is important to mention that the control of the release of caffeine in chewing gum is for a long time and improves the variability of the release and retention times of the drug, being these other advantages of this new form administration of the Caffeine.

It is important to note that the effectiveness of this chewing gum with the active substance which is caffeine, has to be argued based on studies that corroborate that effectiveness, such is the case of the P300 signal that is obtained thanks to an electroencephalogram, this signal is a neural record that is projected as a positive deflection and in turn measures the potential of the presence, magnitude, topography and duration of signaling of cognitive function. The signal is acquired more strongly around the parietal electrodes, although it has been suggested that there are also interactions between the frontal and temporal regions. Recent studies say that this P300 wave is composed of 2 secondary waves known as “P3A and P3B signals”, these components respond individually to different stimuli and it has been suggested that the P3A wave originates in the frontal care mechanisms driven by stimuli during task processing, while P3B originates from parieto-temporal activity associated with attention and memory processing.

The potential related to the P300 signal had shortened latency after chewing gum, and the frontal and temporal beta power was increased by chewing the gum after performing a sustained attention task. The quantitative effects on the EEG of chewing gum without cognitive performance seem to be moderated by the taste, suggesting that chewing gum may alter alertness in the absence of cognitive performance. Working under pressure, i.e. in a setback, was associated with increased activity in the anterior cingulate cortex and left frontal convolution, where the motor neural regions of alertness and executive tasks are located [3]. This same effect was found when chewing gum without taste or smell, suggesting that the motor activity of chewing may be a key factor in explaining these results, however it is unclear whether a higher level of motor activity in chewing will increase associated effects, as there is evidence that a more vigorous chewing or a greater resistance to chewing does not moderate the effects on memory, the fact that chewing gum can increase arousal, it therefore reaches a peak and descends and it’s while decreasing cognitive function in performing tasks that require attention (increasing heart rate and beta power during surveillance), this suggests that it is more plausible that more vigorous chewing can have a greater effect on attention to a short-term that in memory.

That is, chewing alone generates a potentization of the performance of a simple task as a result of a reflective motor activity that is generated in the body in the face of sleep deprivation, but this does not mean that this performance is maintained. One study shows that administering only 200 mg of caffeine in conjunction with chewing gum, improves nothing more the performance of simple and complex activities and/or tasks, but also improves alertness compared to chewing without the active substance. In turn the period of pre-eyetion and cardiac autonomous activity remain unchanged during chewing with or without caffeine, generating a response reflected in the increase of parasympathetic activity with changes in rr intervals in the EEG, the latter mentioned above are predictors of the speed and accuracy in the most complex cognitive tasks during sleep deprivation, alertness and performance maintenance during the realization of them.

Some other studies show evidence that the use of caffeine in chewing gum is also equally effective in dispensing sleep in the face of a post siesta; in a double-blind study with 15 adults as participants they were given this chewing gum containing 100 mg of caffeine at the hour and 6 hours after waking up vs. placebo, they were subsequently assigned psychomotor tasks before a watch dog at 0 , 6, 12 and 18 minutes. The rating of the tests was carried out based on the response rate and the number of hits during the tests. Among the results it was observed that 100 mg of caffeine did not fully restore performance, but showed an improvement in response rate by 85% compared to placebo 73%; since the effect of caffeine was evident at 6 min after waking up, which continued to improve performance until 18 minutes, i.e. the results indicate that 100 mg of caffeine substantially attenuates sleep inertia in the face of a sudden awakening by a time-values period, but higher doses (200 mg) are expected to more easily antagonize sleep inertia as a whole for a longer prolonging period.

 

Discussion
The purpose of this article is to evaluate based on a collection of articles the efficacy of caffeine as an active substance in a new therapeutic presentation vs placebo, studying the pharmacokinetics, bioavailability and half-life of caffeine. Among the bibliographic reviews that were addressed for the realization of this article, it is evidence that caffeine in chewing gum is a novel and new presentation that is effective in counteracting sleep inertia, improving alertness, cognition and maintaining performance during the simple and complex activities of daily life. It is important to note that the effects of caffeine are directly proportional to the dose administered in patients as well as on the route of administration. Chewing a gum without the active substance (placebo) generates a later maintenance of performance as well as alertness with the difference that these effects occur over a very short period of time.

 

Conclusion

Caffeine is an odorless powder that inhibits the enzyme phosphodiesterase, which generates an antagonistic effect on the central receptors of adenosine resulting in antagonism of the transmission of the fatigue signal, promoting wakefulness and increasing mental activity. The effect of chewing is associated with increased orofacial blood flow that increases alertness, physical well-being and memory performance. A combination of chewing gum with caffeine enhances and synergizes the effects that chewing alone generates, resulting in a new, novel and effective therapeutic presentation on sleep inertia, since it is easy to use and its absorption is done through the oral mucosa, which generates a greater bioavailability of the active substance and an immediate mechanism of action, in turn those effects are present for a prolonged period since the caffeine inside the gum is released in a way proportional to chewing. Caffeine can provide better alertness and performance at doses of 75 to 150 mg after acute sleep restriction and at doses of 200 to 600 mg after one night or more sleep loss. Caffeine is unlikely to have negative effects on sleep that follows 8 hours or more after administration. However, frequent use of caffeine can lead toilet and withdrawal syndrome.

Read More Lupine Publishers Neurology and Brain Disorders Journal Articleshttps://brain-disorders-lupine-publishers.blogspot.com/

 

 

Lupine Publishers| Depression and Anxiety Frequency in Patients Hospitalized on the Guadalajara Regional Military Hospital in the Month of April 2019

  Lupine Publishers| Journal of Neurology and Brain Disorders   Abstract Observe and Identify patients that presented depression ...